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A method for processing the results of measurements after application of the 
Laplace transform is proposed for determining thermophysical characteristics by 
the method of a source of constant power, with the heat capacity of the heater 
taken into account. 

At present anew apparatus for carrying out research has been developed, a systems- 
structured analysis, which is used effectively for scientific research and solving technical 
problems. 

In [i], the systems-structured approach is applied to an analysis of thermal processes 
and identification of thermophysical properties of materials and thermal effects. Solution 
of the problem of heat exchange is given in the form of a block diagram. The elements of 
the block diagram are the mathematical operators, setting the rules for transforming the 
thermal and temperature effects influencing an object in the generated reaction. A solution 
for the problem is sought in the Laplace image space. Thus the mathematical expressions are 
transformed to expressions that are simpler than the inverse transforms in the time domain. 

We consider an application of the systems-structural approach to the problem with a 
source of constant power. The equation of heat conduction and the boundary conditions, 
subjected to Laplace transformation with account of zero initial conditions, are of the form 
[i] 

o ~  (x, p) _ pp (x, p) = o; 
a Ox~ ...... 

- - k  OT(X,ox p) [~=o=-d(P)--Ch'pT(OI p); T(oo, p)---- O, 

where 

T (x, p) = T (x, 'r) exp (--  p'~) d'~. (1)  
o 

A solution of this equation, satisfying the boundary conditions, is of the form [i] 

1 exp( x -I/~) (2) 
~(x, p) = $(p) b q/P+ Chp VY �9 

For x = 0 we obtain an expression relating the Laplace integrals for the heat flow and for the 
temperature of a heater 

(0, p) = q(p) 1 
b-{/p--}-Chp (3) 

Substituting (3) into (2), we obtain 

(x, p) = T(0, p) exp ( 
\ 

x V F )  (4)  
V $  
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Fig. i. Block diagram of a solution to the one-dimensional heat-conduc- 
tion problem with account of the heat capacity of a heater. 

Fig. 2. Block diagram for determining the optimal value of the product 
PTma x from the minimum of the relative errors in determining the coeffi- 
cients of thermal diffusivity and thermal activity: FBI is the func- 
tional block for determining the gradients of the temperatures T(0, ~), 
T(x, ~); FB2 is the functional block that performs the Laplace transfor- 
mation; and FB3 is the functional block for determining the value of the 
thermophysical characteristics. 

A block diagram of solutions (3) and (4) is given in Fig. la [i]. This block diagram can be 
represented in an equivalent form, from which it is seen that only a part qx of the total 
heat flow is spent on heating the sample, with another part, qh, raising the temperature of 
the heater (Fig. Ib). 

From Eqs. (3) and (4), one can obtain formulas for determining the coefficients of ther- 
mal activity and thermal diffusivity: 

b -- _ ~-(p) C h l / p - ;  ( 5 )  
r(O, p) 

a -- x~ ( 6 ) 

in ~ -_T(x' p) 
r (0, p) 

The heat-conduction coefficient is found from the expression X = b/a. 

The formulas obtained for the coefficients of thermal activity and thermal diffusivity 
are much simpler than those that would hold for solution of the given probem in the time 
domain. The integrals of type (i), entering Eqs. (5) and (6), can be easily calculated from 
the experimental data with the help of Simpson's formula 

N--I 

p) = [ ~.~ T(x, " q ) e x p ( - - p ' q ) l A T ,  

w h e r e  A'r = "rmax/N. 

For calculating T(0, p) and T(x, p) the integral should be taken from zero to infinity, 
as defined by Eq. (i). However, the function exp(-p~) T(x, ~) rapidlyapproaches zero as 

increases. Therefore, a certain value Tmax exists for which the inequality 

~m.~ ( 7 ) 
~ e x p  ( - -  p~) T (x, ~) d ~ - -  1 exp ( - -  px) T (x, ~) d~ ~ e 
0 o 

is satisfied where e is a small given number. 

Realization of condition (7) depends on the value of the product P~max; in [2,3] recom- 
mendations are given on how to choose it. Thus in [2], it is recommended that P~max be 
selected in the range of 6-30, but in [3] it is recommended that PTma x be chosen from 8 to 13. 
Selection of these values is insufficiently accurately justified. 
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For selection of the optimal value of P~max numerical calculations of the errors in 
determining thermophysical characteristics were conducted, depending on PTma x and the 
combinations u = b/Tmax/Ch and k = x/(2/a~max). The block diagram for determining the opti- 
mal value of the product P~max is shown in Fig. 2. By specifying the values of the thermo- 
physical characteristics a and b, the heat capacity of the heater Ch, the coordinate x, 
the maximum duration of the experiment Tmax, the number of intervals of N into which the 
time of the experiment is divided, and the density of heat flow q, we calculated the gradients 
of the temperature T(0, T) and T(x, ~) for the moments of time ~i = ~max i/N. The density of 
heat flow was selected so that the moment of time ~max of the temperature gradient in the zone 
of the heater T(0, Tmax) would be equal to i0 ~ Such a value of the gradient is usually 
selected when conducting an experiment in order that the change in thermophysical character- 
istics of the sample due to heating be negligible, and the accuracy in the measurement of 
temperature be high enough. 

The error in the measurements of nonstationary gradients of temperature 6T was simulated 
with the help of a generator of random numbers, distributed normally with the mean value equal 
to zero. From the obtained values of the temperature gradients, the values of the Laplace 
integrals were calculated with the help of Simpson's formula, and the thermophysical charac- 
teristics were determined from Eqs.(5) and (6). The obtained values of the thermophysical 
characteristics were compared with the values a and b, specified when calculating the tempera- 
turegradients in the course of solving the direct problem. Then the relative errors in deter- 
mining the thermophysical characteristics were calculated. 

At first we calculated the relative errors in determining thermophysical characteristics 
due to the finite length of the interval of integration, without including experimental errors. 
Their values have been found to depend unambiguously on P~max and the quantities u and k, 
where the value of u has a negligible effect on the results of the calculation. 

The relative errors in determining the coefficients of the thermal diffusivity and thermal 
activity will be minimal if in the first case PTma x is chosen from the relationship P~max = 
5 k + 6 in the range of values of the quantity k from 0.4 to 1.0, and in the second case 
PTma x is equal to 8. The value of u in the calculations was assumed to be 20. The minimal 
values of these errors constitute not more than 0.2-0.4% and are due to the finite length of 
the interval of integration and the error in calculating the Laplace integral from Simpson's 
formula. 

When the values P~max are less than optimal, the values of the relative errors in deter- 
mining the thermophysical characteristics increase significantly because of the increase in 
the contribution of the error due to the finite length of the interval of integration. When 
the values of P[max are higher than optimal, a negligible increase in the errors indicated is 
observed since only the data for a comparatively short initial interval of time is used for 
calculating the Laplace integral. 

Of greater practical interest is the result obtained by taking account of the error in 
measuring the temperature gradients, which was defined by changing the dispersion of the 
generator of random numbers. The values of the relative error in determining thermophysical 
characteristics was determined for each value of P~max and the quantity k for five different 
combinations of random numbers of the generator. From the results of each of the five calcula- 
tions, we determined the mean value of the relative error and the root-mean-square deviation. 
The maximum possible value of the relative error was determined from the expression 

6 x / x  = 16X/Xl~ + t%x/x , (8) 

where X is a thermophysical characteristic. The optimal value of P~max was determined from 
the minimum of expression (8). 

The dependence of the optimal P~max and of the corresponding value of the relative error 
in determining the coefficient of the thermal diffusivity on the value of the quantity k and 
on the error in measurement of the temperature is given in Fig. 3. A similar dependence is 
plotted for the relative error in determining the coefficient of thermal activity (Fig. 4), 
but this error does not depend on k. 

The errors considered are due to the finite length of the interval of integration in com- 
putation of the Laplace integral and the error in measuring the temperature gradients. It was 
assumed that the other values entering Eqs. (5) and (6) were measured without an error. Now 
we analyze the sources of errors in determining thermophysical characteristics, not treated 
earlier. 
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Fig. 3. Dependence of the optimal value of the 
product P~max and of the corresponding value of 
relative error in determining the coefficient of 
thermal diffusivity (6a/a)mi n (%) on the quan- 
tity k and an error in the measurement of the 
temperature 6T (K). 
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Fig. 4. Dependence of the optimal product PTma x 
and of the corresponding value of the relative 
error in determining the coefficient of thermal 
activity (6b/b)mi n (%) on the error in the 
measurement of temperature 6T (K). 
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Fig. 5. Dependence of the coefficients A and B 
on the quantity u and the product P~max. 

The relative error in determining the coefficient of thermal diffusivity due to in- 
accuracy of measurement of the values entering Eq. (6) is equal to 

8a/a  = 1 / i 6 a / a z  ' r)z + (26~x) ~ , ( 9 )  

where 6a/a_Z,T is the relative error due to the finite length of the interval of integration 
and the error in measuring the temperature gradients. 

The value of x can be measured reasonably simply with an error not exceeding 1%. If in 
the experiment, the quantity k is not more than 0.4, and the error in measuring the tempera- 
ture gradients is in the range from 0.05 to 0.10~ then the relative error will be equal to 
4-6%. By decreasing the error in measuring the temperature gradients down to O.02~ and by 
decreasing the quantity k (increasing the number Fox), the error in determining the coeffi- 
cient of thermal diffusivity can be reduced to 3%. An increase in the number Fo x can be 
achieved either by increasing the duration of the experiment, which requires the use of 
samples with larger cross-section, or by reducing the size x. A decrease in the size x can 
lead to an increase in the relative error in determining the thermal diffusivity coefficient 
according to Eq. (9). 
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We find the relative error in determining the coefficient of thermal activity due to 
the inaccuracy in measuring the values entering Eq. (5). We can readily show that this error 
is equal to the quadratic sum 

5b "~ r (|--e--P~max)~_q 12 + [ p~'(O, p) i~Ch .]2 t - ( ~ ~2 , 
b : [(1--e-" 'max)q --'F(O, p)p~C h (1--e-o~max)--~---~(0-~ -p)p~C h k b ]Z,T (10)  

Calculations have shown that the two first terms of the sum (i0) depend on the relative 
errors in determining the heat flow 6q/q and on the heat capacity of the heater 6Ch/C h and 
also the quantities u and PTma x. 

If 6Ch/C h and 6b/bE, T are equal to zero, then 

5bib = A(u, P~max) 6qlq. 

A s i m i l a r  d e p e n d e n c e  e x i s t s  i f  6q /q  = 0 and 6b /bE,  T = 0: 

6b/b = B (~, PTmax) ~C h /Ch, 

where  A and B a r e  c o e f f i c i e n t s  d e p e n d i n g  on t h e  v a l u e  o f  t h e  q u a n t i t y  u and P<max ( F i g .  5 ) .  

E q u a t i o n  (10 )  can  be r e w r i t t e n  i n  t h e  fo rm 

6b/b = ]/iA6q/q) 2 + (B6C h /C  h )2 + (6b/b)~,r. (Ii) 

The value of the relative error in determining the heat capacity of a heater does not 
have a strong influence on the relative error in determining the coefficient of thermal 
activity. Thus, for example, for PTmax~ = 7, u = 15, 6T = 0.i K, 6q/q = 1% and 6Ch/C h = 10%, 
the relative error in determining the coefficient of thermal activity is equal to 2.6%. 
Calculation without the relative error in determining the heat capacity of a heater yields a 
result equal to 1.9%. Thus, a contribution to the total relative error from a 10% relative 
error in determining the heat capacity of a heater constitutes only 0.7%. 

It is seen from Fig. 5 that other equal conditions being equal, the smaller value of 
the contributions to the total relative error of relative errors in determining heat flow 
and heat capacity of the heater corresponds to the bigger values of the quantity u and smaller 
values of the product PTma x. This leads to the fact that the optimal value P~max is somewhat 
less than the values shown in Fig. 3. The choice of the optimal value P~max Should be made 
for the specific values u, 6T, 6q/q, 6Ch/C h from the minimum of Eq. (i). 

The conducted studies have shown that the method can be effectively used when determining 
the thermophysical characteristics of the materials. 

The dependences obtained in the work can be used to choose the optimal value of the 
product P~max under different experimental regimes. 

NOTATION 

x, instantaneous coordinate; ~, time; T(x, T), excess temperature with respect to the 
initial one; ~, thermal diffusivity coefficient; b, thermal activity coefficient; C h, heater 
heat capacity; q, specific heat flux; p, Laplace transformation parameter; 6X/X, relative 
error in determining thermophysical characteristics; 6T, absolute error in the excess tempera- 
ture measurement; o(6X/X), root-mean-square deviation of the relative error in determining the 
thermophysical characteristic; t, Student coefficient; Fox, Fourier number; u and k, dimension- 
less quantities; N, number of sampling intervals in the time of the experiment in calculating 
the Laplace integral from Simpson's formula. 

LITERATURE CITED 

i. A.G. Shashkov, Systems-Structured Analysis of the Process of Heat Exchange and Its 
Application [in Russian], Moscow (1983). 

2. A. Kavianipour and J. V. Beck, Int. J. Heat Mass Transfer, 21, No. 7, 967-973 (1978). 
3. Y. lida, S. Ohtani, and K. Stephan, "Experimental method to determine the heat production 

rate, thermal diffusivity, and conductivity of solids," Rev. Sci. Instrum., 21, No. i0, 
1648-1653 (1984). 

222 


